We call such a spanning subgraph T an economical spanning subgraph. 我们称这样的生成子图T为廉价的生成子图。
We consider three types of probability measures on Q, the set of subgraphs of G, which govern a random spanning tree, a random spanning forest, and a random connected subgraph respectively. 本文研究图G的子图空间G上的三类概率测度,它们分别刻画图的随机扩张树,随机扩张森林和随机连通子图。
The induced spanning subgraph was employed in studying the property of the graph of decomposable tensor. 应用诱导生成子图的方法,研究了可合张量的图论性质。
-connected Spanning Subgraph in Near Triangulations without Separating Triangles 几乎三角剖分图中的2-连通支撑子图
A ( spanning) subgraph F of a graph G can be a DS-factor when every connected component of F is a DS. 图G的一个支撑子图F称为一个双星(DS)因子,当F的每一个连通分支是一个双星。
A k-regular spanning subgraph of graph G is called a k-factor of G. 图G的一个k正则支撑子图称为G的k因子。
A subset S of E ( G) is called an edge covering of G if the subgraph induced by S is a spanning subgraph of G. SE(G)称为G的一个边覆盖,如果由S导出的子图是G的一个生成子图。
In this paper we proved that every near triangulation without separating triangles has a 2-con-nected spanning subgraph of maximum degree at most 3 which is the best possible. 证明了每一个无可分离三角形的几乎三角剖分图均存在一个2-连通支撑子图,其最大度至多3.并且,这一结果是最佳可能的。
A graph G is supereulerian if G has a spanning eulerian subgraph. 若图G含有生成欧拉子图,则称G是超欧拉的。
A k-factor of graph G is a k-regular spanning subgraph of G. A graph G Is k-covered if each edge of G belongs to a k-factor. 图G的k-正则生成子图称为G的一个k-因子,若图G的每条边都含于G的一个k-因子中,称图G足k-覆盖的。
Then, a topology control algorithm for constructing a minimum-energy path-preserving spanning subgraph for a wireless ad hoc network is discussed. By this algorithm, the entire network connectivity and the global minimum-energy path property can be efficiently maintained in a responsive manner as the network changes dynamically. 然后讨论了一种分布式的拓扑控制算法,当网络的组成发生动态变化时,算法可以以响应的方式维护全网的连通性和全局的最小能量特性。